ortho_seqs
Release 1.0.1

Saba Nafees

Mar 01, 2023

1 Introduction:

2 Guide
2.1 Background & Quickstarto
2.2 Tutorial: Running a sample dataset (protein sequences)
2.3 Tutorial: Visualizing your rFonlDresults
2.4 Tutorial: Generating a sequence logoplot
25 License e
2.6 GetFurtherHelp,

3 Indices and tables

CONTENTS

ortho_seqs, Release 1.0.1

CONTENTS 1

ortho_seqs, Release 1.0.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION:

This documentation accompanies the ortho_seqs python command line tool that computes multivariate tensor-based
orthogonal polynomials based on DNA, RNA or protein sequence data and maps corresponding phenotypic information
onto the sequence space.

ortho_seqs, Release 1.0.1

4 Chapter 1. Introduction:

CHAPTER
TWO

GUIDE

2.1 Background & Quickstart

2.1.1 ortho_seqgs

Ortho_seqs is a command line tool that implements a mathematical approach to convert sequence data (DNA/protein) to
multivariate tensor-valued orthogonal polynomials and project phenotypes onto the polynomial space. We are currently
working to update this mathematical approach and will post these updates soon.

We do this by first converting the sequence information into 4-dimensional (for DNA) or 20-dimensional (for amino
acids) vectors. The method can also be used for padded sequences to deal with unequal sequence lengths. Find out
more about the original approach in this paper Analyzing genomic data using tensor-based orthogonal polynomials
with application to synthetic RNAs. The paper gives an example of this method as applied to a case of synthetic RNA
from a previously published dataset.

For example, the sample data inputs for this tool are shown in this image. Here, each site in a sequence is first converted
to a 4-dimensional vector. The input data includes phenotype values for each sequence.

Sequence . Veftori o ®
GGATGA... =+ U A] U U U U 0.2
LR TG

ﬁ 0 0 1 0 | 0

o) Lol Lo] [t o] Lol ... 1.3
GAACGA...\ T T
0 0 0 0 0 0

2.1.2 Documentation

To view documentation and detailed tutorials for ortho_segs, click here.

https://academic.oup.com/nargab/article/2/4/lqaa101/6030984
https://academic.oup.com/nargab/article/2/4/lqaa101/6030984
https://raw.githubusercontent.com/snafees/ortho_seqs/master/vec_methods_explanation-2.png
https://ortho-seqs.readthedocs.io

ortho_seqs, Release 1.0.1

2.1.3 Usage

First, install an environment with dependencies for this package:

conda create -n ortho_seqs pip
conda activate ortho_seqgs
pip install -r requirements.txt

or

conda env create -f conda_environment.yml
conda activate ortho_seq

Then, install the package:

python setup.py install

Gather the input file(s) needed.

There are three main ways to submit your sequence and phenotype files to ortho_segs. The first method is to submit
them separately, in their own .txt files. Recently, however, an update was added that allows you to submit them both in
the same file. For this to apply: 1) The file must be either a .xIsx or a .csv file. 2) The sequences must be in the first
column, and the phenotypes must be in the second column. 3) The columns must not have header names.

If you use a single file for the sequence and phenotype, you would submit the file path where you would submit the
sequence file path, and do not include the —pheno_file flag. note: the GUI does not support single-file uploads yet.

The phenotypes must be real numbers.

Then, to run the commandline tool:

To start with a test example, you can run the sample command below:

ortho_seq orthogonal-polynomial ./ortho_seq_code/tests/data/nucleotide/first_order/test_
—,seqs_2sites_dna.txt --molecule DNA --pheno_file ./ortho_seq_code/tests/data/nucleotide/
—first_order/trait_test_seqs_2sites_dna.txt --poly_order second --out_dir ../results_
—ortho_seq_testing/DNA_2sites_test_run/

The above sample command line is building the tensor-valued orthogonal polynomial space based on the sequence data
which consists of 12 sequences, each with two sites. Since these are DNA sequences, the vectors are 4-dimensional.
These used to be flags for sites, dimensions, and population size, but new functionality will automatically calculate
these. Corresponding to each sequence is a phenotype value (a real number) as given in the phenotype file. For DNA,
the tool can run first and second order analyses currently. We’ll implement third order in a future version. For amino
acids, the current version supports first order analysis and we hope to expand this in the future.

Amino acids/nucleotides that do not appear in any sequence will be removed from the alphabet when the letters are
being converted to first order vectors. For example, if the residue ‘R’ (Arginine) never occurs in the sequence dataset,
the first order vectors will now have 19 dimensions (instead of 20) and 20 dimensions (instead of 21) if the sequences
are padded with ‘n’. This is done to greatly reduce runtime for larger sequence datasets and for longer sequences. When
the program will run, it will return this sentence:

6 Chapter 2. Guide

ortho_seqs, Release 1.0.1

Will be computing p sequences with s sites, and each vector will be d-dimensional.

Where p represents the population size (number of rows in sequence file), s represents the number of sites, and d
represents the number of amino acids/nucleotides detected in the sequence file (adds on 1 for lowercase n’s). For the
above example, the program will return

Will be computing 12 sequences with 2 sites, and each vector will be 4-dimensional.

Along with regressions on each site independent of one another and onto two sites at a time, the above command also
computes Fest which is the phenotype estimated by the regressions. This shows that the mathematical calculations
are done correctly as we now have an equation that accurately captures our initial data points. This only works here
for sequences with 2 sites. If we had more sites, we’d need to do higher order calculations in order to capture all our
combinations. Therefore, when running the tool with more sites, as will probably be the case for most users, even just
going up to second order gives us useful information about our system. First order tells us the importance of each
site (independent of any correlations it might have with another site) and second order tells the importance of pairs of
nucleotides independent of other pairs. Please take a look at the paper linked above to learn more about this method.

Flags & Functionality

--pheno_file

Input a file with phenotype values corresponding to each sequence in the sequence file. If you have a .xIsx or .csv file,
do NOT use this flag (more details above in the **Gather the Input Files Needed** section).

--molecule

Currently, you can provide DNA or protein sequences. Here, you can also provide.
—.sequences of unequal lengths, where sequences will be padded with lowercase 'n's until,_
—1it has reached the length of the longest sequence.

--poly_order

The order of the polynomials that will be constructed. Currently, one can do first and second order for DNA and first
order for protein.

--out_dir

Directory where results can be stored.

--precomputed

Let’s say you have a case where you have the same set of sequences but two different corresponding sets of phenotypes.
You can build your sequence space and then project the first set of phenotypes onto this space. Then, if you wish to see
how the other set of phenotypes maps onto the same sequence space, you can use this flag so that you’re not wasting
time and memory to recompute the space. When doing this, be sure to add your results from the first run to the out_dir
when rerunning the command with the precomputed flag.

--alphbt_input

Used to group amino acids/nucleotides together, or specify certain amino acids/nucleotides. If you don’t want to group
anything, don’t include this flag when running ortho_seqs. For example, putting ASGR for a protein molecule will tell
the program to have 6 dimensions: one for each amino acid specified, and one for z, where every unspecified amino
acid or nucleotide will be converted to z, and one for n (whenever sequences have unequal lengths, ortho_segs will pad

2.1. Background & Quickstart 7

ortho_seqs, Release 1.0.1

the shorter sequences with n at the end). You can also comma-separate amino acids/nucleotides to group them. For
example, putting AS,GR will make the vectors 4-dimensional, one for AS, one for GR, one for every other amino acid
(z), and one for n.

There are also built-in groups:
protein_pnp will group by polar and non-polar amino acids, every other amino acid, and n.

essential groups by essential and non-essential amino acids, every other amino acid, and n. Group 1: Essential -
ILVFWHKTM Group 2: Non-Essential - Everything else Group 3: n (Source: https://www.ncbi.nlm.nih.gov/books/
NBK557845/)

alberts groups by categories set by Alberts. Group 1: Basic - KRH Group 2: Acidic - DE Group 3: AVLIPFMWGC
Group 4: Everything else Group 5: n (Source: https://www.ncbi.nlm.nih.gov/books/NBK21054/)

sigma groups by categories set by Sigma. Group 1: Aliphatic - AILMV Group 2: Aromatic - FYV Group 3:
Polar Neutral - NQCST Group 4: Acidic - KRH Group 5: Basic - DE Group 6: Other - G Group 7: Other -
P Group 8: n (Source: https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/protein-biology/
protein-structural-analysis/amino-acid-reference-chart)

hbond groups by strength of hydrogen bond attractions. Group 1: Can Make Hydrogen Bonds - NQSTDERKYHW
Group 2: Can Not Make Hydrogen Bonds - Everything else Group 3: n The first group is able to make hydrogen bonds,
whereas the second group is not.

hydrophobicity groups by hydrophobicity. Group 1: Very Hydrophobic - LIFWVM Group 2: Hydrophobic - CYA

Group 3: Neutral - TEGSQD Group 4: Hydrophilic - Everything else Group 4: n The first group is very hydrophobic,
the second group is slightly hydrophobic, the third group is neutral, and the last group is hydrophilic.

--min_pct

When ortho_seqs is run, a .csv file of covariances will be saved in the specified path. This matrix of covariances is one
of the main results of the program (as shown in {sequence_file_name}.npz output below). The csv file will contain the
covariance of each nucleotide at each site with another nucleotide at another site (or amino acids at each site). Suppose
there are 5 covariance values of 2, 1, 0, 0, -1. For the percentiles, all unique magnitudes will be considered when
assigning covariances, which will be 2, 1, and 0. 0 will be the Oth percentile (therefore, assigning O to the —min_pct
flag will return every covariance), 1 (and -1) will be 33.33..., and 2 will be 66.66... Specifying 50 as —min_pct will
only return the row with the covariance of 2, since only 66.6...>50. The min_pct flag is short for minimum percentile,
which will remove any covariances from the .csv file that are below the given percentile. The default value is 75.

--pheno_name

Let’s say you know that your phenotype values represent IC50 values. You could then add —pheno_name IC50 as a
flag, and on the rFon1D plot that is automatically generated, the y-axis label will include IC50. Default is None.

2.1.4 Results & Outputs
Generating logo plot

Before even running the tool, we can generate a logo plot to visualize the different nucleic/amino acids in the sequence
dataset. This is implemented as a command line function.

Refer to the logo-plot tutorial on the ReadTheDocs for more information on how to generate this.

8 Chapter 2. Guide

https://www.ncbi.nlm.nih.gov/books/NBK557845/
https://www.ncbi.nlm.nih.gov/books/NBK557845/
https://www.ncbi.nlm.nih.gov/books/NBK21054/
https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/protein-biology/protein-structural-analysis/amino-acid-reference-chart
https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/protein-biology/protein-structural-analysis/amino-acid-reference-chart

ortho_seqs, Release 1.0.1

Running ortho_seqs

The tool will provide updates as the run is progressing regarding which parts of the calculations are done being com-
puted. For example, when the mean is computed, it’'ll say “computed mean”. All the different elements that it is
computing are different parts of building the multivariate tensor-valued orthogonal polynomial space based on the se-
quence information. To get a general idea of what the calculations mean, please refer to the supplementary methods in
the paper linked above. The program will save outputs in npz format. See below for what is stored.

{sequence_file_name}.npz

This will store the calculations that went into constructing the polynomial space. This also includes information about
the statics of our sequence space, such as mean, variance and a matrix of covariances. See figures 4 and for ideas on
how mean and the matrix of covariances can be visualized. All of these calculations go into building the orthogonal
polynomial space based on sequence information and at this point of the program, we have not connected the phenotype
(the functional variable) with the sequence information.

{sequence_file_name}_covs_with_F.npz

This will store the covariance of the phenotype (or trait) with the polynomials. This is when we start connecting the
phenotype with the sequence space.

{trait_file_name}_Fm.npz

This contains the mean trait value. This is a scalar.

{trait_file_name}_regressions.npz

This set of files contains the main results which includes the following:

1. rFonlD: This is the regression of the trait onto the first order conditional polynomial orthogonalized within.
This tells us the regression of the phenotype onto each site and onto each nucleotide (or amino acid) at that site
independent of any correlations that site might have with other sites. For the case of nucleotides, this can be
visualized as bar plots as shown in Figure 6 in the paper linked above.

2. rFon2D: This gives 4 matrices which give the regression of the pheonotype onto (sitel)x(sitel), (site 1)x(site 2),
(site 2)x(site 1) and (site 2)x(site 2), in that order. The second matrix here is the important one and it is the same
as rFon12. See description of rFon12.

3. rFonl2: This is the regression of the trait onto pairs of sites for given nucleotides at each site. These are
regressions on (site 1)x(site 2) independent of first order associations. Since we’re looking at 2 sites at a time
and there’s a possibility of having 4 nucleotides at each site (for the case of DNA), we can visualize this via a
4x4 matrix as shown in Figure 8 in the paper linked above.

cli_output.txt

Everything that prints out on the CLI, when running orthogonal_polynomial, will be saved to this document, in the
defined out_dir.

2.1. Background & Quickstart 9

https://numpy.org/doc/stable/reference/generated/numpy.savez.html

ortho_seqs, Release 1.0.1

2.1.5 The rfid class

The newest update to ortho_segs involves adding a new class of objects, called rfld (short for rFon1D). To run rfld,
use the CLI, and type in rfld-viz like you would orthogonal_polynomial when running ortho_seqs.

Note: rfld-viz requires you to have run orthogonal_polynomial beforehand.

--filename

This is the same as the {trait_file_name}_regressions.npz file that is returned from ortho_segs, as it contains the rFon1D
values that are used.

--alphbt_input

Similarly to orthogonal_polynomial, this flag takes in a comma-separated list of the groupings (Note: this list must be
comma-separated for the code to work). orthogonal_polynomial will print out the rf1d form of alphabet input in the
CLI before any mathematical calculations are made, which will work if you choose to copy/paste it.

--molecule

Identical to how it is in orthogonal_polynomial. Tt doesn’t matter much what you put here, as this is purely for visual
purposes only.

--phenotype

Identical to how it is in orthogonal_polynomial. This is used as the y-axis labeling for the barplot.

--out_dir

The path where you want the visualizations saved, if applicable.

--action

This flag is where you specify which visualization you want.
Options:

1. barplot - Prints and saves a barplot of the rFon1D values, and saves it, if an out_dir is specified. This is what is
called in orthogonal_polynomial at the end.

2. density - Prints a histogram plot of the rFon1D values, and saves it, if an out_dir is specified.

3. summary - Prints out the number of sites and dimensions, the alphabet input, the molecule, and calls sort (ex-
plained in further detail below). This is called in orthogonal_polynomial automatically, at the very end of the
program. This will be saved to the out_dir as summary.txt Note: there won’t be a separate sort.txt file created.

4. heatmap - Prints a heatmap of the rFon1D values, and saves it, if an out_dir is specified.
5. boxplot - Prints a boxplot of the rFon1D values, and saves it, if an out_dir is specified.

6. sort - This will print out the top 10 rFon1D values by magnitude, including the rFonlD value, the site, and the
group it belongs to. This will be saved to the out_dir as sort.txt.

10 Chapter 2. Guide

ortho_seqs, Release 1.0.1

2.1.6 To run the GUI

A GUI version of the CLI is also available to make it easier for users to utilize the tool. The GUI allows the user to upload
the sequence and phenotype information via an upload button, specify the molecule, the polynomial order they wish to
run, and provide the path to the directory which contains precomputed sequence space if the user wishes to project a
different phenotype onto the same space (i.e., given same sequence data but different corresponding phenotypes). The
GUI is in its early form and will include further updates resembling the cli in future versions.

®

User interface to compute tensor-based orthogonal polynomials for sequence data

Upload sequence file: seq_file
Upload phenotype file: pheno_file
Molecule:

DNA <

poly_order:

first <

Select directory with precomputed sequence file: precomputed_dir

Alphabet input, comma separated:

RUN

To run the gui, open a terminal and make sure you’re in the ortho_seqs environment just as you would do if you were
running the cli (see above). Then type in the following:

ortho_seq gui

This will pull up the gui window and allow you to input the relevant information.

2.1. Background & Quickstart 11

https://github.com/snafees/ortho_seqs/blob/plot/gui_with_alphbt_input_box.png?raw=true

ortho_seqs, Release 1.0.1

cov_hist_{trait_file_name}.png

This is a histogram of all non-zero covariances. Its bin width is 0.5.

cov_data_frame_{trait_file_name}.csv

This file is a csv file of covariances between every item at every site. This includes the item ID and site for both items
in the pair used to calculate the covariance, the covariance value, the covariance magnitude, and an ID for the pair
(s1-g2,s3-g4 represents the pairing of an element from the first group in the alphabet at the second site, and an element
from the third group at the fourth site). The sites are one-indexed, meaning a value of 3 for the First Site or Second Site
column corresponds to site number three along the sequence.

rFonlD_graph_{trait_file_name}.png

This is a bar plot of all nonzero rFon1D values of every item at every site.

2.1.7 Support

If you have specific or general questions, feel free to open an issue and we’ll do our best to address them. If you have
any comments, suggestions or would like to chat about this method or similar ideas, feel free to reach out via email at
saba.nafees314 @gmail.com.

2.1.8 Roadmap

We hope to implement third order analysis for DNA in the near future. For amino acids, we hope to implement second
order analysis. We’ll add visualization ideas soon but if you have any thoughts on this, please feel free to reach out.

2.1.9 Contribution

We hope to make the tool run faster as with higher dimenions and higher order analysis of longer sequence data, we
can run into memory and time issues. Any thoughts on this or visualization are welcome.

2.1.10 Authors and acknowledgements

The derivation of the method and the construction of an initial version of the program was done by Dr. Sean Rice
who served as Saba’s Ph.D. advisor. Thank you to Isaac Griswold-Steiner for helping write the function to compute
generalized inner and outer products. Thank you to Pranathi Vemuri for helping with the very initial draft of the CLI,
adding CI integration testing, and to Phoenix Logan for helping write unit-tests. Thank you to AhmetCan for helping
initiatie the first GUI version. Thank you, Aaron, for always being ready to review PRs and for your insights/help in the
development process. Thank you to Vijayanta Jain and Saugato Rahman Dhruba for being the guinea pigs and running
lots of sample commands, discussing the mathematics with me, and for their ideas on visualizations. Their efforts are
deeply appreciated!

12 Chapter 2. Guide

mailto:saba.nafees314@gmail.com

ortho_seqs, Release 1.0.1

2.1.11 License

MIT

2.2 Tutorial: Running a sample dataset (protein sequences)

This document will walk you through the steps of how to run a dataset on ortho_seqs, and what the various outputs are.
This tutorial uses protein sequence data from The Intrinsic Contributions of Tyrosine, Serine, Glycine, and Arginine to
the Affinity and Specificity of Antibodies by Birtalan & Sidhu et al., 2008.

2.2.1 1. Setting Up Your Computer to Run ortho_seqs

The first thing you have to do (aside from gathering data!) is set up your computer to run ortho_segs.

You first need to have Miniconda installed on your computer, in order to do the shell commands. To do so,
follow the link here, and choose the appropriate version, with regards to your computer.

After you have installed Minoconda, open up Terminal, or an equivalent Command-Line Interface (CLI). Run either
this:

conda create -n ortho_seqgs pip
conda activate ortho_seqs
pip install -r requirements.txt

Or, alternatively:

conda env create -f conda_environment.yml
conda activate ortho_seqs

To activate ortho_seqs on your device. You will also need to run:

conda install openpyxl
python setup.py install

This line must be run every time ortho_seqs is updated, so you are using the most recent version. If the above steps
have worked, congrats! You now have ortho_seqs on your computer. It’s time to input some data.

2.2.2 2. Your dataset

The data that is input to ortho_seqs must include a column of sequences, and a column of their corresponding phenotype
values. These two columns can either be separate .txt files, or a single .xlsx or .csv file. Take, for instance, our toy
example, which is a dataset originating from a paper titled The Intrinsic Contributions of Tyrosine, Serine, Glycine,
and Arginine to the Affinity and Specificity of Antibodies by Sidhu et al. In this work, the authors constructed synthetic
antibody Fab libraries to measure the impact of four different amino acids, Tyr, Ser, Gly and Arg on antigen recognition.
Affinity and specificity data for these antigen-binding Fabs is provided for 3 different antigens (insulin, VEGF, and
HER?2). For this tutorial, we look at CDRH3 sequences of Fabs binding to insulin, along with corresponding phenotypes
which is given by Specificity ELISA Signal Optical Density (see Figure 4a in the paper). This will be referred to as the
“Sidhu dataset” for this tutorial. The dataset, when input into ortho_seqs, should look like

2.2. Tutorial: Running a sample dataset (protein sequences) 13

https://choosealicense.com/licenses/mit/
https://docs.conda.io/en/latest/miniconda.html
https://www.sciencedirect.com/science/article/pii/S0022283608001691?casa_token=Qs608NJVJggAAAAA:-PruJ8_0_3pBtf4NHSVo0POYtzErFcDoqJYMxJQZER51_uZNtRYvBoWIMa9j3oIZJ18uY0rS3g
https://www.sciencedirect.com/science/article/pii/S0022283608001691?casa_token=Qs608NJVJggAAAAA:-PruJ8_0_3pBtf4NHSVo0POYtzErFcDoqJYMxJQZER51_uZNtRYvBoWIMa9j3oIZJ18uY0rS3g

ortho_seqs, Release 1.0.1

® @ | | sequences_insulin.txt
YSYSYYYSYYYYSYGLnnn 5.87
Y SYYYYYYYYSYGFnnn 3.73
YYGGYYYYSYYSGLAnnnn 5.87
YSYYYYYSYYYYGAMnnnn 3.63
Y Y Y YYYYYYGSYGLnnn 4,14
YYSYYYYYYYYGGYGLnnn 3.72
YSYYYYYYYYYGYYGLnnn 5.B7
YSYYYYYYYYYGYYGMnnn 5.87
Y Y Y Y Y YYYYYGEYYGLnnn 5.87
YSYYYYYYYYYGSYGLnnn 4.4
YSYYYYYYYYYGSYGMnnn 3.71
YSYYYYYYYYYGSYGLnnn 3.71
Y Y Y Y Y YYYYYGSYGFnnn 3.77
YSYYYYYYYYYGSYAMnnn 5.B7
YSYYYYYYYYYGGYGMnnn 5.87
Y EYYYYYSYYYGEYYGMnnn 4,82
YSYYYYYSYYYGSYGLnnn 5.87
YSYYYYSYYYYGGYGLAnn 5.B7
YSYYYYGYYYYGYYGLnnn 5.87
Y Y YY Y Y YYYGEYYGFnnn 3.73
or
A B C (n]

1 ¥SYSYYYSYYYYSYGLnnn 5.87

2 SSYSYYYYYYYYSYGFnnn 3.73

3 YYGGYYYYSYYSGLnnnnn 5.87

4 YSYYYYYSYYYYGAMnnnn | 3.63

5 YYYFYYYYYYYGSYGLnnn | 4.14

B YYSYYYYYYYYGGYGLnnn 3.72

7S YYYYGYYGLnnn 5.87

2 |YSYYYYYYYYYGYYGMnnn 5.87

9 YSYYYYYYYYYGYYGLnnn 5.87

10 | YSYYYY Y Y YYYGSYGLnnn 4.4

11 YSYYYYYYYYYGSYGMnnn 3.71

12 YSYYYYYYYYYGSYGLnnn 371

13 | YSYYYYYYYYGSYGFnnn 377
14 [¥YSYYYYYYYYGSYAMnnn 5.87
15 [¥YSYYYYYYYYGGYGMnnn 5.87
16 | ¥YSYYYYYSYYYGYYGMnnn 4.02
17 [¥YSYYYYYSYYYGSYGLnnn 5.87
18 [YSYYYYSYYYYGGYGLnnn 5.87
18 | YSYYYYGYYYYGYYGLnnn 5.87
20 [YSYYYYGYYYYGYYGFnnn 3.73

Note that for .xIsx (and .csv) files, the first column must be the sequences, and the second column must be the pheno-
types. In addition, there must not be any header names for any files.

2.2.3 3. Executing Ortho_Seqs

We now turn towards our CLI to execute ortho_seqs. Using the Sidhu dataset, our input would look like:

ortho_seq orthogonal-polynomial ortho_seq_code/tests/data/protein/Sidhu.xlsx --molecule.
—protein --poly_order first --out_dir docs/source/tutorial_outputs --alphbt_input SYG,R.
—--min_pct 40 --pheno_name ELISA

Let’s explore what these flags are, and how you can use them.

The file input (ortho_seq_code/. ../sidhu.xIsx) is our sequence AND phenotype data.

--molecule

This flag is where you indicate what kind of molecule this is. This can be DNA, RNA, or protein. For the Sidhu dataset,
the molecules are protein molecules.

14 Chapter 2. Guide

ortho_seqs, Release 1.0.1

--poly_order

This flag is to indicate the highest degree of polynomial order you want. Currently, DNA and RNA can go up to 2, and
protein can only be 1. For the Sidhu dataset, we will look at first-order interactions.

--pheno_file

This flag is not in the example, because we don’t need it. If you were to present your data as two separate .txt files, then
this would be where you put the file path for the phenotype data, and the first file path is for your sequence data.

--out_dir

This flag indicates where you want the output files to go (more on what exactly is saved there later). If the folder path
already exists, ortho_seqs will create a new directory with a very similar name, and it will tell you what the new path’s
name is.

--alphbt_input

(Note: “Characters” in the following section refer to the nucleotides for DNA, the bases for RNA, and all 21 amino acids
for proteins, plus one additional character, “n”, which indicates nothing is at that spot to deal with protein sequences of
unequal lengths.) This flag indicates the groupings of characters you want. The default will be no groupings, or every
character gets counted on its own. If you include (uppercase) letters here, then only those characters will be used (every

[T

other character, except “n”, gets converted to a “z” and treated as one group). If you comma-separate somewhere in
that group, then characters will be grouped based on what commags) they are in between. For the Sidhu dataset, to
show proof of concept, the groupings will be:

1. SYG
2. R
3. Everything else (z)
4. n
If we were to leave out the commas, the groups would be:
1. S
Y
R
G
. Everything else (z)

o v oA wD

n

--min_pct

One output will be an .xIsx file containing all of the first-order covariances between each amino acid at each side with
another amino acid at another site. However, this file can get pretty big pretty quick. Therefore, this flag will only print
out covariance values whose magnitudes are at or above the PERCENTILE value specified. The default is 75, meaning
it will only save the covariances which range from the 75th to the 100th percentiles in magnitude. To keep it at the
default, leave out this flag when inputting what you want. For the Sidhu dataset, we want all magnitudes at or above
the 40th percentile (as proof of concept).

--pheno_name

The pheno_name will label the y axis of the rFon1D graph with whatever the phenotype value represents, if desired.

2.2. Tutorial: Running a sample dataset (protein sequences) 15

ortho_seqs, Release 1.0.1

2.2.4 4. Obtained Outputs

CLI Outputs

The CLI will first print out whether or not it expects one file for the sequence and phenotype, or two separate files. If
it is one file, it will then identify whether or not it is a .xlsx or a .csv file. The example outputs:

Pheno file is not separate from sequence file, assuming seq_file is either a .csv or a .
~xlsx file.
Reading .xlsx file.

The CLI will then print out the groupings used for the alphabet. If you specified groups with a comma (such as in the
example), it will print a map of what every numerical group corresponds to, and a list of the groupings, which is useful
for creating rf1d objects. The example outputs:

Groupings according to --alphbt_input:
{0: SYG | 1: R | 2: z | 3: n}

rfld form of alphabet input:

SYG,R,z,n

After that, it will output the following text for all first-order calculations as it calculates what it’s on:

computed mean

computed variance

computed covariance

saved covariance histogram as {out_dir}/cov_hist_{seq_filename}.png
Saved covariance data frame as {out_dir}/cov_data_frame_{seq_filename}.csv
computed regll

computed Pa: first order orthogonalized within each vector

computed P1il

computed varPlil

computed covllil

computed regllil

computed Palil

computed P1D

computed varP1D

Saving to {out_dir}/{seq_filename}.npz

Saving to {out_dir}/{seq_filename}_covs_with_F.npz

where {out_dir} is replaced with the out_dir that was supplied to it, and {seq_filename} is the name of the sequence
file.

Next, the CLI outputs the first order regression outputs. The example outputs:

Regression of trait on site 1
[[-1.2409090909 1.2409090909
[0.5716578947 -0.5716578947
0.1729480519 -0.1729480519
-0.1468831169 0.1468831169
-0.1652922078 0.1652922078
-0.2701158301 0.2701158301
-0.
0.
-0.

(== I — I — N —

1246911197 0.1246911197 0.
8338 -0.8445 -0.67875
1

0
0
0
0.
0.
0
0
0
.2094936709 1.194375 -0

Lo B s T s T e T s Y e B |

7543831169 .67875

(continues on next page)

16 Chapter 2. Guide

ortho_seqs, Release 1.0.1

(continued from previous page)

[-0.4118 0.2073076923 1.194375 0.2610759494]
[-0.3639382239 1.2094936709 -0.8821518987 0.5846153846]
[-0.2904929577 0.5495526316 O. -0.0067894737]
[-0.3020833333 0.4392307692 1.194375 -0.0067894737]
[-0.1501690141 1.194375 0.0443181818 -0.0067894737]
[-0.1723809524 0.0611392405 ©0.1521575342 0.1660273973]
[-0.1069047619 ©. 0.0424064516 0.0627828054]
[-0.3776712329 -1.073625 0.2858333333 0.1069047619]
[-0.4165068493 0. -0.7238461538 0.5358701299]
[0. 0. -0.4165068493 0.4165068493]]
Regression on 1st order polynomial - orthogonalized within - rFonlD
[[-1.3013918017 1.3013918017 ©. 0.]
[0.656 -0.656 0. 0.]
[0.211342155 -0.211342155 0. 0.]
[-0.0709090909 0.0709090909 0. 0.]
[-0.2096854147 0.2096854147 0. 0.]
[-0.3441860465 0.3441860465 O. 0.]
[-0.1927906977 0.1927906977 0. 0.]
[0.9240104167 -0.9316923077 -0.7539130435 0.]
[-0.6834090909 1.1394117647 1.1228985507 -0.7539130435]
[-0.5211924119 ©0.5136781609 1.1228985507 0.1872058824]
[-0.2885714286 1.1394117647 -0.9605882353 0.5121393035]
[-0.2600081934 0.5730053805 0. -0.0852307692]
[-0.2246265938 0.3658706468 1.1228985507 -0.0852307692]
[-0.0686666667 1.1228985507 -0.0325 -0.0852307692]
[-0.1128708756 0.2267178503 0.0726612903 0.0867741935]
[0.4901587302 ©O. -0.1979 -0.0246423752]
[-0.1385915493 -0.7828571429 1.0344444444 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0. 1]
Regression of trait on site 2 independent of 1
[0. 0. 0. 0.]

computed rFonl
computed rFonlD

Saving regression results to to {out_dir}/{seq_filename}_regressions.npz

Trait values estimated from regressions

[6, &, 0, O, O, O, ©®, O, ®, O, O, O, O, ©®, O, ©®, O, O, 0, O, O, O, 0, O, 0, O, O, O, O,._
-0, 0, 0, 0, 0, 6, 0, 0, &, 0, ©®, 0, 0, 0, 0, 0, 0, 0, O, 0, O, 0, O, O, 0, 0, 0, O, O,
-0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0]

After that, the CLI will create an rf1d object, and present the rf1d.summary() and rfl1d.barplot() function outputs. The
example returns:

rfld Object:

Number of sites: 19
Number of dimensions: 4
Alphabet input: ['SYG',
Molecule: protein

'R', 'ACDEFHIKLMNPQTVW', 'n']

Phenotype represents ELISA values
Highest rFonlD magnitudes:

(continues on next page)

2.2. Tutorial: Running a sample dataset (protein sequences) 17

ortho_seqs, Release 1.0.1

(continued from previous page)

-1.3014 Site: 0 Key: SYG

1.3014 Site: 0 Key: R

1.1394 Site: 8 Key: R

1.1394 Site: 10 Key: R

1.1229 Site: 9 Key: ACDEFHIKLMNPQTVW

1.1229 Site: 12 Key: ACDEFHIKLMNPQTVW
1.1229 Site: 8 Key: ACDEFHIKLMNPQTVW

1.1229 Site: 13 Key: R

1.0344 Site: 16 Key: ACDEFHIKLMNPQTVW
-0.9606 Site: 10 Key: ACDEFHIKLMNPQTVW

saved regression graph as {out_dir}/rFonlD_Regressions_of_{phenotype}_values.png

Histogram and Spreadsheet of Covariances

The covariances between every character at every site with every other character at another site is recorded in a .csv file,
and includes everything at or above the minimum percentile you specified in the input (or defaults to 75th percentile).
In addition, the program outputs a histogram of the non-zero covariances, with the bin widths always being 0.5. For
the Sidhu dataset, it looks like

Histogram of Non-Zero Covariances

2000 A

1500 A

Frequency
=
o
o
o

500 A

-0.15 -0.10 -0.05 0.00

And will have the file name cov_hist_{name}.png The .csv file has 8 columns, and looks like:

ID
s2-g0,s16-g3
s2-g1,s16-g3
s3-gl,s6-g0
s3-g0,s6-g0
s3-g0,s6-gl
s3-gl,s6-gl
s2-g1,s15-g0
s2-g0,s15-g0
s3-g0,s13-g0
s3-g1,s13-g0

They are:

Magnitude
0.03947569
0.03947569

0.0376467
0.0376467
0.0376467
0.0376467
0.03566529
0.03566529
0.03429355
0.03429355

0.05 0.10 0.15 0.20 0.25
Non-Zero Covariances

Covariance

-0.0394757
0.03947569
-0.0376467

0.0376467
-0.0376467

0.0376467
-0.0356653
0.03566529
0.03429355
-0.0342936

First Site
16
16
6
6
6
6
15
15
13
13

W w NN W WwwwNN
L OOk kLK OOk ko

3

O O OO0 R RKR OO W

First Group Second Site Second Group Percentile

99
99
98
98
98
98
98
97
97
96

18

Chapter 2. Guide

ortho_seqs, Release 1.0.1

1. ID: Useful for searching for a specific pairing. Ordering will be s{Site 1)-g{Group 1}, s{Site 2)-g{Group 2}.
For example, s1-g2,s10-g8 refers to the pairing between Group 2 at Site 1, and Group 8§ at Site 10.

Magnitude: Absolute value of the covariance value, used to assign percentile values and plot histogram.
Covariance: The obtained covariance value.

First Site: The site of one of the groups of the covariance pairing. Site 1 for ID column.

A

First Group: The group the character belongs to, identifiable through the —alphbt_input dictionary. Group 1 for
ID Column.

o

Second Site: The site of the other group of the covariance pairing. Site 2 for ID column.

7. First Group: The group the character belongs to, identifiable through the —alphbt_input dictionary. Group 2 for
ID Column.

8. Percentile: The percentile the respective magnitude is, relative to the entire dataset (including magnitudes that
were omitted from the .csv file).

E.g., in our case, say we have a value of -.051 for the covariance corresponding to s1-g1,s5-g2. This means that the
group SYG at site 1 covaries negatively with an Arg at site 5. This covariance analysis tells us things about the statics
of the sequence space. At this point, we have not projected our phenotype onto the sequence space. Here, we can
discover patterns of covariation between amino acids at a given site with amino acids at other sites. When looking
at the distribution of the magnitude of covariances, we can identify the ones at the tail ends of this distribution. This
information is denoted in the output csv and the allows for the identification of highly covarying (negative or positive)
sites.

rFon1D Graph

The main result for the first order analysis is the regression of the phenotype (in this case, ELISA values) onto the first
order conditional polynomial (denoted as rFonl1D). This tells us the effect of having a given amino acid at one site
independent of its correlations with other amino acids at other sites. Here, we can use this result to understand the
independent effects of a given amino acid at a given site on the phenotype.

One output is a graph of the nonzero rFon1D values. For the Sidhu dataset, it looks like

1.01

0.0 1

Regressions of ELISA values

-1.0 1

e SYG ° R e Z « n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sequence Site

At the bottom, it lists the dictionary of the groups and their corresponding number, which then can be used to determine
which color bar belongs to which group. The rFon1D graph will always have the name rFon1D_graph_{name}.png.
The rFonlD values can also be found in the _regressions.npz file which can be opened up by the user in a jupyter
notebook for further visualization.

2.2. Tutorial: Running a sample dataset (protein sequences) 19

ortho_seqs, Release 1.0.1

2.2.5 4. The rfid Class

To obtain more visualizations of your rFon1D results, there is another CLI tutorial here that you can follow.

2.3 Tutorial: Visualizing your rFon1D results

This document will walk you through the steps of how to visualize your rFon1D outputs from ortho_segs using the
rfld-viz CLI command.

Note: 7f1d-viz assumes that you have already run orthogonal_polynomial on the dataset. For a tutorial on
how to run orthogonal_polynomial, view the tutorial here.

2.3.1 1. Requirements for rf1d-viz

e The {trait_file_name}_regressions.npz file that is returned from orthogonal-polynomial.
* The rfld form of the alphabet input.

When you run orthogonal-polynomial, the CLI will output the following text towards the beginning:

rfld form of alphabet input:

The line beneath that line is the rfI1d form of the alphabet input.
* The molecule type of the sequence (mostly DNA or protein).

* What the phenotype values are representing.

2.3.2 2. rf1d-viz flags:

rfld-viz will require you to input the following flags, many of which have counterparts in orthogonal-polynomial:

--filename

This will be the {trait_file_name)}_regressions.npz file that is returned from orthogonal-polynomial.

--alphbt_input

This will be the rfld form of the alphabet input.

--molecule

This is the molecule type.

--phenotype

This is the phenotype type. It will be used for labelling the graphs.

--out_dir

This is where you want the graphs stored. Note: the path must exist prior to running rf1d-viz.

--action

20 Chapter 2. Guide

https://ortho-seqs.readthedocs.io/en/master/rf1d_tutorial.html
https://ortho-seqs.readthedocs.io/en/master/orthogonal_polynomial_tutorial.html

ortho_seqs, Release 1.0.1

This is where you specify what kind of visualization you want. The current options are:

1. barplot - This will create a barplot of the rFon1D values, grouped by site and alphabet input. This is called
automatically when you run orthogonal-polynomial.

2. density - This will create a density plot of the rFon1D values.

3. summary - Prints out the number of sites and dimensions, the alphabet input, the molecule, and calls sort (another
rfld-viz action that is explained in further detail below). This is called in orthogonal-polynomial automatically,
and will be saved to the out_dir as summary.txt.

4. heatmap - This will create a heatmap of the rFon1D values, grouped by site and alphabet input.
5. boxplot - This will create a boxplot of the rFon1D values, grouped by .

6. sort - This will print out the top 10 rFon1D values by magnitude, including the rFon1D value, the site, and the
group it belongs to. This will be saved to the out_dir as sort.txt.

7. ALL - This will produce a barplot, histogram, heatmap, and boxplot simultaneously.

Note: For now, you will need to close the first graph once it displays on your computer for the rest of
the graphs to run.

2.3.3 3. Running rf1d-viz

Similarly to orthogonal-polyomial, you will run rfld-viz in your CLI, first starting with the keyword ortho_seq, but
now followed by rfld-viz, instead of orthogonal-polynomial. The general format is

ortho_seq rfld-viz filename --alphbt_input --molecule --phenotype --out_dir --action

where filename represents the —filename flag.

2.3.4 Guided example with the Sidhu dataset

The example uses the Sidhu dataset, which is the same as was used for the orthogonal-polynomial tutorial. Recall that
the input for orthogonal-polynomial was:

ortho_seq orthogonal-polynomial ortho_seq_code/Sidhu/Sidhu.xlsx --molecule protein --
—poly_order first --out_dir docs/source/tutorial_outputs --alphbt_input SYG,R --min_pct.
40 --pheno_name ELISA

The regression file that will be used for rf1d-viz will thus be called

Sidhu_regressions.npz

Using the CLI output, we obtain

rfld form of alphabet input:
SYG,R,z,n

which reveals that the rfld form of the alphabet input is SYG,R,z,n.
With these in mind, the CLI input for rf1d-viz for a barplot will be

ortho_seq rfld-viz docs/source/tutorial_outputs/Sidhu_regressions.npz --alphbt_input SYG,
—R,z,n --molecule protein --phenotype ELISA --out_dir docs/source/tutorial_outputs --
—action barplot

2.3. Tutorial: Visualizing your rFon1D results 21

ortho_seqs, Release 1.0.1

This line of code will reproduce the graph that is automatically run, and looks like

Regressions of ELISA values

e SYG e R o Z e n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sequence Site

Notice how the y axis is labelled with the phenotype name specified

The CLI input for rfld-viz for a density plot will be

ortho_seq rfld-viz docs/source/tutorial_outputs/Sidhu_regressions.npz --alphbt_input SYG,
—R,z,n --molecule protein --phenotype ELISA --out_dir docs/source/tutorial_outputs --
—,action density

The graph looks like

0.6

o o o
W > n

ELISA Regression Density

o
N

0.1

0.0~

-1.0 -0.5 0.0 0.5 1.0
rFon1D Values

Run summary with

ortho_seq rfld-viz docs/source/tutorial_outputs/Sidhu_regressions.npz --alphbt_input SYG,
—R,z,n --molecule protein --phenotype ELISA --out_dir docs/source/tutorial_outputs --
—,action summary

The output will be

rfld Object:

(continues on next page)

22 Chapter 2. Guide

ortho_seqs, Release 1.0.1

(continued from previous page)

Number of sites: 19

Number of dimensions: 4

Alphabet input: ['SYG', 'R', 'z', 'n']
Molecule: protein

Phenotype represents ELISA values
Image output directory: docs/source/tutorial_outputs
Highest rFonlD magnitudes:

-1.3014 Site: 0 Key: SYG
1.3014 Site: 0 Key: R

1.1394 Site: 8 Key: R

1.1394 Site: 10 Key: R
1.1229 Site: 9 Key: z

1.1229 Site: 12 Key: z
1.1229 Site: 8 Key: z

1.1229 Site: 13 Key: R
1.0344 Site: 16 Key: z
-0.9606 Site: 10 Key: z

The CLI input for rfld-viz for a heatmap will be

ortho_seq rfld-viz docs/source/tutorial_outputs/Sidhu_regressions.npz --alphbt_input SYG,
—R,z,n --molecule protein --phenotype ELISA --out_dir docs/source/tutorial_outputs --

—»action heatmap

The graph looks like

-1.3 . 0.0 0.0

0.66/-0.66 0.0 0.0
0.21-0.21 0.0 0.0
-0.07 0.07 0.0 0.0
-0.210.21 0.0 0.0

-0.340.34 0.0 0.0

-0.190.19 0.0 0.0

.-0.93 -0.75 0.0

-0.68 -0.75
-0.52/0.51 0.19

ELISA Values

-0.29] -0.96/0.51
-0.26/0.57 0.0 -0.09
-0.22 0.37 .-0.09
-0.07.-0,03 -0.09
-0.11 0.23 0.07 0.09
0.49 0.0 -0.2 -0.02
-0.14-0.78. 0.0
0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

SYG R z n
Alphabet Item

The CLI input for rfld-viz for a boxplot will be

2.3. Tutorial: Visualizing your rFon1D results

23

ortho_seqs, Release 1.0.1

ortho_seq rfld-viz docs/source/tutorial_outputs/Sidhu_regressions.npz --alphbt_input SYG,
—R,z,n --molecule protein --phenotype ELISA --out_dir docs/source/tutorial_outputs --
—action boxplot

The graph looks like

1.0 A
» 05 ——
c
x4
@ q
E) o
g 0.0 B e
= L]
<
0
T
—0.51 .
L]
o e
-1.01 —_—
—_——
SYG R z n

Alphabet

Lastly, this is the input for sort:

ortho_seq rfld-viz docs/source/tutorial_outputs/Sidhu_regressions.npz --alphbt_input SYG,
—R,z,n --molecule protein --phenotype ELISA --out_dir docs/source/tutorial_outputs --
—,action sort

The output will be

-1.3014 Site: 0 Key: SYG
1.3014 Site: 0 Key: R

1.1394 Site: 8 Key: R

1.1394 Site: 10 Key: R
1.1229 Site: 9 Key: z

1.1229 Site: 12 Key: z
1.1229 Site: 8 Key: z

1.1229 Site: 13 Key: R
1.0344 Site: 16 Key: z
-0.9606 Site: 10 Key: z

As you can see, this prints out the second half of the summary output, since summary calls sort.

2.4 Tutorial: Generating a sequence logo plot

This document will walk through how to generate a frequency/probability-based logo plot from sequence data in the
format of an input to ortho_segs, using the logo-plot CLI command. The logo plot can provide information on the
frequencies of nucleotides/amino acids present in your sequence dataset before running orthogonal-polynomial.

Logo plots are generated using the logomaker package in Python. More customization options exist (font, color
schemes, etc) that are not (yet) implemented here.

24 Chapter 2. Guide

https://logomaker.readthedocs.io/en/latest/

ortho_seqs, Release 1.0.1

2.4.1 1. Requirements for logo-plot

The sequence data, formatted as input to ortho_segs. This can take the form of either:
« .txt file: single file containing sequences, separated by line breaks.

* .csv or .xlsx file: single file containing sequence data in the first column. Can (but doesn’t have to) contain
phenotype data in the second column.

2.4.2 2. logo-plot flags:

logo-plot will require the following flags.

--filename

This will be the sequence data file, formatted as described in (1).

--molecule

This is the molecule type. Should either be DNA, RNA, or protein. Default is DNA.

--out_dir

This is where you want the logo plot to be stored.

2.4.3 3. Running logo-plot:

You will run logo-plot in the CLI the same way you would run orthogonal-polynomial or rfld-viz. The general format
is:

ortho_seq logo-plot filename --molecule --out_dir

2.4.4 4. Guided example with test dataset:

The example uses the Sidhu dataset that has also been used in the other tutorials.

The sequence data that will be used for this example is called sidhu_insulin_cdrh3_seqgs.xlsx. Given that this dataset is
about proteins, our CLI input will be

ortho_seq logo-plot docs/source/sidhu_insulin_cdrh3_seqs.xlsx --molecule protein --out_
—»dir docs/source/tutorial_outputs/

The saved figure will look like:

2.4. Tutorial: Generating a sequence logo plot 25

https://ortho-seqs.readthedocs.io/en/master/orthogonal_polynomial_tutorial.html#your-dataset

ortho_seqs, Release 1.0.1

2.5 License

MIT License
Copyright (c) 2020 Saba Nafees

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.6 Get Further Help

If you have more questions, please refer to the github repo at https://github.com/snafees/ortho_seqs for existing issues
or start an issue there. You can also refer to the PyPI page at https://pypi.org/project/ortho-seq-code/

2.6.1 Contact

If you have more questions or comments, please feel free to reach out to me at saba.nafees3 14 @gmail.com. We look
forward to hearing from you!

26 Chapter 2. Guide

https://github.com/snafees/ortho_seqs
https://pypi.org/project/ortho-seq-code/
mailto:saba.nafees314@gmail.com

CHAPTER
THREE

INDICES AND TABLES

* genindex
* modindex

¢ search

27

	Introduction:
	Guide
	Background & Quickstart
	ortho_seqs
	Documentation
	Usage
	First, install an environment with dependencies for this package:
	Then, install the package:
	Gather the input file(s) needed.
	Then, to run the commandline tool:
	Flags & Functionality

	Results & Outputs
	Generating logo plot
	Running ortho_seqs

	The rf1d class
	To run the GUI
	Support
	Roadmap
	Contribution
	Authors and acknowledgements
	License

	Tutorial: Running a sample dataset (protein sequences)
	1. Setting Up Your Computer to Run ortho_seqs
	2. Your dataset
	3. Executing Ortho_Seqs
	4. Obtained Outputs
	CLI Outputs
	Histogram and Spreadsheet of Covariances
	rFon1D Graph

	4. The rf1d Class

	Tutorial: Visualizing your rFon1D results
	1. Requirements for rf1d-viz
	2. rf1d-viz flags:
	3. Running rf1d-viz
	Guided example with the Sidhu dataset

	Tutorial: Generating a sequence logo plot
	1. Requirements for logo-plot
	2. logo-plot flags:
	3. Running logo-plot:
	4. Guided example with test dataset:

	License
	Get Further Help
	Contact

	Indices and tables

